ADDITIONAL PRACTICAL EXPERIMENT NO: 8

To calculate Air Quality Index (AQI) of Dwarka and Nearby Area

Conducted By: Dr. Pramod Kumar

Assistant Professor Department of Environmental Studies

Dr. Sachchidanand Tripathi Convenor

DBT Star College Scheme Department of Botany

Dr. Rajkumari S. Devi

Assistant Professor Department of Botany

REPORT

Department of Botany conducted additional experiment no. 8 - "To Calculate Air Quality Index (AQI) of Dwarka and Nearby Area", under the aegis of DBT Star College Scheme on 31st January, 2019 at ICT Centre.

Theme of the Experiment

Awareness of daily levels of air pollution is important to the citizens, especially for those who suffer from illnesses caused by exposure to air pollution. Further, success of a nation to improve air quality depends on the support of its citizens who are wellinformed about local and national air pollution problems and about the progress of mitigation efforts. Thus, a simple yet effective communication of air quality is important. MoEFCC launched the National Air Quality Index (AQI). AQI, as 'One number-One Colour-One Description' for the common man to judge the air quality within his vicinity. The formulation of the index was a continuation of the initiatives under Swachh Bharat Mission. The concept of an air quality index (AQI) that transforms weighted values of individual air pollution related parameters (e.g. SO₂, CO, visibility, etc.) into a single number or set of numbers is widely used for air quality communication and decision making in many countries. An Air Quality Index (AQI) is a number used by government agencies to communicate to the public how polluted the air currently is or how polluted it is forecast to become.

- Indicates whether pollutant levels in air may cause health concerns.
- Ranges from 0 (least concern) to 500 (greatest concern)

As the value of AQI increases, an increasingly large percentage of the population is likely to experience increasingly severe health effects. The daily results of the index are used to convey to the public an estimate of air pollution level. In most cases, AQI indicates how clear or polluted the air in our surrounding is, and the associated health risks it might present. The AQI centers on the health effects that may be experienced within a few days or hours after breathing polluted air. Briefly, an AQI is useful for:

- a) General public to know air quality in a simplified way,
- b) A scientist who engages in scientific research using air quality data.
- c) A politician to invoke quick actions,
- d) A decision maker to know the trend of events and to chalk out corrective pollution control strategies,
- e) A government official to study the impact of regulatory actions, and enforcement of Standards.

Experiment

The Hands-on experiment was attended by 23 students of B.Sc. (H) Botany, Semester - II. The experiment was planned in such a manner to incorporate MS-Excel learning for developing software so that the gap between the theoretical concepts and the practical aspects could be bridged. Students were provided with a manual of "Stepwise guide to experiment" in which they recorded all the observations. The main key points of the lecture were:-

- Brief description about Air Quality
- Basic Introduction and principle of Air Quality Index (AQI)
- Major pollutants of interest for the purpose of calculation

- The concept of calculation of AQI with comments on the health status of people.
- Propagation of scientific thoughts.

The presentation began with the basic introduction of air quality and then methodology for calculating AQI was explained to the students. In order to have clear implications of the calculations the students were also taught the ways to comments upon the health status. The presentation was followed by an interactive session between the students and the teacher wherein the air quality of various states was discussed in detail. The presentation was concluded with a demonstration of the AQI program made on MS-Excel for calculating AQI for various concentrations of Air pollutants. After the presentation, the procedure to download online data of various pollutants from Continuous Emission Monitoring Systems was also explained. The students enthusiastically participated and downloaded the concentrations of pollutants and then calculated the AQI of different areas. They also calculated the AQI of their hometowns and some found the air quality status of the decade as well.

The experiment gave an opportunity to the students to critically analyze the status of air quality and provide the information to the local people who are not aware of the conditions of the deteriorating air, but most importantly, the students were given the opportunity to learn MS-office and develop the software on their own followed by online data procurement. A total of five assignments were performed by the students. Students were able to get theoretical as well as practical knowledge with online procurement of data. Students learnt by using excel how to convert raw data into meaningful information. The students also shared their experience after the experiment and wished to participate in many more such experiments in future too. As commented by the students, the experiment was very well organized, informative and helped them to enhance their skills. The efforts of the teacher were also appreciated by the participants.

COLLEGE AND

DEEN DAYAL UPADHYAYA COLLEGE

Sector-3, Dwarka, New Delhi-110078

Additional Practical Experiment No: 8 To calculate Air Quality Index (AQI) of Dwarka and Nearby Area

Date: 31.01.2019

WORKSHEET

Course Name: B.Sc. (H) Botany Sem. II		
Name of the Student:	Roll No:	

Q. Calculate the Air Quality Index (AQI) and comment on the health status of the area.

- 1. 24 Hour $PM_{2.5}$ concentration value monitored at Dwarka site is 75 $\mu g \ m^{-3}$
- 2. 24 Hour PM_{10} concentration value monitored at Dwarka and nearby area is 135 $\mu g \ m^{-3}$
- 3. 8 Hour Ozone concentration value monitored at the busy traffic intersection site is 0.08753 ppm.
- 4. 24 Hour SO₂ concentration value monitored at Dwarka and nearby area is 0.05814 ppm.
- 5. 24 Hour NO₂ concentration value monitored at Traffic intersection site in Dwarka 1.1036 ppm.

Table: Breakpoints for the Air Quality Index (AQI)

These breakpoints							e AQIs		
O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³)	ΡM ₁₀ (μg/m ³)	CO (ppm)	SO ₂ (ppm)	NO ₂ (ppm)	AQI	Category	
0.000–0.064 0.065–0.084 0.085–0.104	0.125–0.164	0.0–15.4 15.5–40.4 40.5–65.4	0–54 55–154 155–254	0.0–4.4 4.5–9.4 9.5–12.4	0.000-0.034 0.035-0.144 0.145-0.224	(²) (²) (²)	0–50 51–100 101–150	Good. Moderate. Unhealthy for sen- sitive groups	
0.105–0.124 0.125–0.374 (³) (³)	0.165-0.204 0.205-0.404 0.405-0.504 0.505-0.604	465.5–150.4 4150.5–250.4 4250.5–350.4 4350.5–500.4	255–354 355–424 425–504 505–604	12.5–15.4 15.5–30.4 30.5–40.4 40.5–50.4	0.225-0.304 0.305-0.604 0.605-0.804 0.805-1.004	(²) 0.65–1.24 1.25–1.64 1.65–2.04	151–200 201–300 301–400 401–500	Unhealthy. Very unhealthy. Hazardous.	

¹Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be more precautionary. In these cases, in addition to calculating the 8-hour ozone index value, the 1-hour ozone index value may be calculated, and the maximum of the two values reported. ²NO₂ has no short-term NAAQS and can generate an AQI only above an AQI value of 200.

³8-hour O₃ values do not define higher AQI values (\geq 301). AQI values of 301 or higher are calculated with 1-hour O₃ concentrations.

⁴If a different SHL for PM_{2.5} is promulgated, these numbers will change accordingly.

France Kump Experiment In-charge

Signature Member, DBT

	AIR QU	ALIT	Y INDE	X OF A	URBAN	AREA					
S.No.	Pollutant	Im	I.	BP	BP,	n	II.	RPRP.	C_RP.	Air Quality Index	Final Value
		-m	-10	E	~~ L0	∼p	-HI -L0	E HI E LO	Cp Li Lo	AQI	AQI
	Ozone	150	101	0.104	0.085	0.08753	49	0.019	0.0025333	107.5332474	108
2	PM _{2.5}	200	151	150.4	65.5	75	49	84.9	9.5	156.4829211	156
3	PM ₁₀	100	51	154	55	135	49	66	80	90.5959596	91
4	SO_2	100	51	0.144	0.035	0.05814	49	0.109	0.02314	61.40238532	61
s	NO_2	300	200	1.24	0.65	1.1036	100	0.59	0.4536	276.8813559	277
Where,											

I $_{p}$ = the (Air Quality) index for pollutant p

 C_p = the rounded concentration pollutant p,

 BP_{Hi} = the breakpoint that is greater than or equal to C_p

 BP_{Lo} = the breakpoint that is less than or equal to $C_{p\prime}$

 $I_{\rm Hi}$ = the AQI value corresponding to ${\rm BP}_{\rm Hi\prime}$

 I_{Lo} = the AQI value corresponding to BP_{Lo}

Experiment Indonge.

DEEN DAYAL UPADHYAYA COLLEGE

Sector-3, Dwarka, New Delhi-110078

Additional Practical Experiment No: 8 To calculate Air Quality Index (AQI) of Dwarka and Nearby Area

Date: 31.01.2019

Course Name: B.Sc. (H) Botany Sem. II

Name of the Faculty: Dr. Pramod Kumar

S.No.	Roll No.	Name of the Student	Signature		
1.	18HBT6801	Aastha Verma	Aasthe.		
2.	18HBT6804	Aniket Kumar	Amiket lamar		
3.	18HBT6805	Astha Purwar	Affre		
4.	18HBT6806	Atul Kumar	· Alant Kuma		
5.	18HBT6807	Chandrika	Chemderike		
6.	18HBT6808	Chandra Prakash			
7.	18HBT6810	Dawa Namgial	Barro		
8.	18HBT6811	Devshree Singh			
9.	18HBT6813	Juhi Srivastava	Querf.		
10.	18HBT6814	Khushal Gautam	Lungudam		
11.	18HBT6815	Mamta Khanna	Mamtakhanna		
12.	18HBT6817	Monika	Moniles		
13.	18HBT6819	Nikita Singh	aning		
14.	18HBT6820	Priyanshi Sahu	Piakes		
15.	18HBT6821	Radhika	1945		
16.	18HBT6823	Ranjana			
17.	18HBT6824	Ria Britney Masih	REQ.		
18.	18HBT6825	Rinki	-Riuki		
19.	18HBT6826	Saksham Jamwal			
20.	18HBT6827	Sargam Bharti			
21.	18HBT6829	Shrikant Tyagi			
22.	18HBT6830	Sourabh Kumar	Sougette		
23.	18HBT6832	Suraj	The		
24.	18HBT6834	Vandana	Budana		
25.	18HBT6835	Vichitra	VP		
26.	18HBT6836	Vishal Arora	Cist al		
27.	18HBT6837	Yogesh Kumar Meena	yogen.		
28.	18HBT6838	Ekta	1 Ch		
29.	18HBT6839	Tanu Priya	Swep siga		
30.	18HBT6840	Harsha S.	Devel-		

Pranoel Kumar Experiment Incharge.

Signature